skip to main content


Search for: All records

Creators/Authors contains: "Constable, Andrew J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem. 
    more » « less
  2. null (Ed.)
    Southern Ocean ecosystems are globally important. Processes in the Antarctic atmosphere, cryosphere, and the Southern Ocean directly influence global atmospheric and oceanic systems. Southern Ocean biogeochemistry has also been shown to have global importance. In contrast, ocean ecological processes are often seen as largely separate from the rest of the global system. In this paper, we consider the degree of ecological connectivity at different trophic levels, linking Southern Ocean ecosystems with the global ocean, and their importance not only for the regional ecosystem but also the wider Earth system. We also consider the human system connections, including the role of Southern Ocean ecosystems in supporting society, culture, and economy in many nations, influencing public and political views and hence policy. Rather than Southern Ocean ecosystems being defined by barriers at particular oceanic fronts, ecological changes are gradual due to cross-front exchanges involving oceanographic processes and organism movement. Millions of seabirds and hundreds of thousands of cetaceans move north out of polar waters in the austral autumn interacting in food webs across the Southern Hemisphere, and a few species cross the equator. A number of species migrate into the east and west ocean-basin boundary current and continental shelf regions of the major southern continents. Human travel in and out of the Southern Ocean region includes fisheries, tourism, and scientific vessels in all ocean sectors. These operations arise from many nations, particularly in the Northern Hemisphere, and are important in local communities as well as national economic, scientific, and political activities. As a result of the extensive connectivity, future changes in Southern Ocean ecosystems will have consequences throughout the Earth system, affecting ecosystem services with socio-economic impacts throughout the world. The high level of connectivity also means that changes and policy decisions in marine ecosystems outside the Southern Ocean have consequences for ecosystems south of the Antarctic Polar Front. Knowledge of Southern Ocean ecosystems and their global connectivity is critical for interpreting current change, projecting future change impacts, and identifying integrated strategies for conserving and managing both the Southern Ocean and the broader Earth system. 
    more » « less
  3. null (Ed.)
    The manuscript assesses the current and expected future global drivers of Southern Ocean (SO) ecosystems. Atmospheric ozone depletion over the Antarctic since the 1970s, has been a key driver, resulting in springtime cooling of the stratosphere and intensification of the polar vortex, increasing the frequency of positive phases of the Southern Annular Mode (SAM). This increases warm air-flow over the East Pacific sector (Western Antarctic Peninsula) and cold air flow over the West Pacific sector. SAM as well as El Niño Southern Oscillation events also affect the Amundsen Sea Low leading to either positive or negative sea ice anomalies in the west and east Pacific sectors, respectively. The strengthening of westerly winds is also linked to shoaling of deep warmer water onto the continental shelves, particularly in the East Pacific and Atlantic sectors. Air and ocean warming has led to changes in the cryosphere, with glacial and ice sheet melting in both sectors, opening up new ice free areas to biological productivity, but increasing seafloor disturbance by icebergs. The increased melting is correlated with a salinity decrease particularly in the surface 100 m. Such processes could increase the availability of iron, which is currently limiting primary production over much of the SO. Increasing CO 2 is one of the most important SO anthropogenic drivers and is likely to affect marine ecosystems in the coming decades. While levels of many pollutants are lower than elsewhere, persistent organic pollutants (POPs) and plastics have been detected in the SO, with concentrations likely enhanced by migratory species. With increased marine traffic and weakening of ocean barriers the risk of the establishment of non-indigenous species is increased. The continued recovery of the ozone hole creates uncertainty over the reversal in sea ice trends, especially in the light of the abrupt transition from record high to record low Antarctic sea ice extent since spring 2016. The current rate of change in physical and anthropogenic drivers is certain to impact the Marine Ecosystem Assessment of the Southern Ocean (MEASO) region in the near future and will have a wide range of impacts across the marine ecosystem. 
    more » « less
  4. null (Ed.)
    Successful management and mitigation of marine challenges depends on cooperation and knowledge sharing which often occurs across culturally diverse geographic regions. Global ocean science collaboration is therefore essential for developing global solutions. Building effective global research networks that can enable collaboration also need to ensure inter- and transdisciplinary research approaches to tackle complex marine socio-ecological challenges. To understand the contribution of interdisciplinary global research networks to solving these complex challenges, we use the Integrated Marine Biosphere Research (IMBeR) project as a case study. We investigated the diversity and characteristics of 1,827 scientists from 11 global regions who were attendees at different IMBeR global science engagement opportunities since 2009. We also determined the role of social science engagement in natural science based regional programmes (using key informants) and identified the potential for enhanced collaboration in the future. Event attendees were predominantly from western Europe, North America, and East Asia. But overall, in the global network, there was growing participation by females, students and early career researchers, and social scientists, thus assisting in moving toward interdisciplinarity in IMBeR research. The mainly natural science oriented regional programmes showed mixed success in engaging and collaborating with social scientists. This was mostly attributed to the largely natural science (i.e., biological, physical) goals and agendas of the programmes, and the lack of institutional support and push to initiate connections with social science. Recognising that social science research may not be relevant to all the aims and activities of all regional programmes, all researchers however, recognised the (potential) benefits of interdisciplinarity, which included broadening scientists’ understanding and perspectives, developing connections and interlinkages, and making science more useful. Pathways to achieve progress in regional programmes fell into four groups: specific funding, events to come together, within-programme-reflections, and social science champions. Future research programmes should have a strategic plan to be truly interdisciplinary, engaging natural and social sciences, as well as aiding early career professionals to actively engage in such programmes. 
    more » « less
  5. null (Ed.)